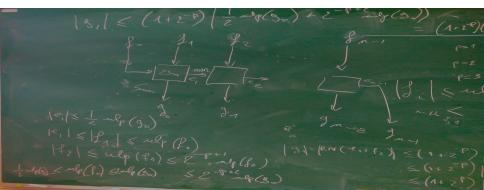
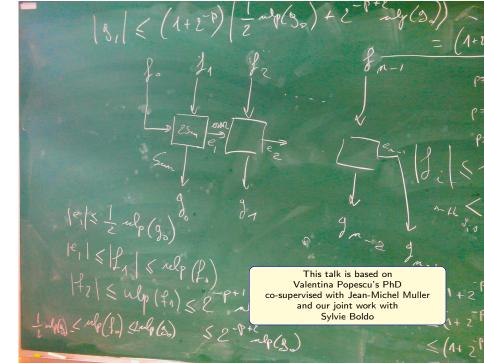
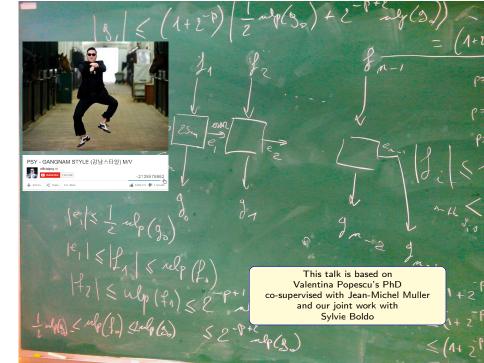
Multiword Arithmetic: Long-Standing Algorithms, Modern Challenges

Mioara Joldes

LAAS-CNRS, Toulouse, France







A Growing Demand for More (and Less) Precision

AI / Machine Learning Accelerators

- Low-prec formats: FP16, bfloat16, FP8
- Optimized tensor cores (NVIDIA, Intel AMX, Google TPU)
- Focus on throughput, energy efficiency
- Increasingly used for mixed-precision algorithms

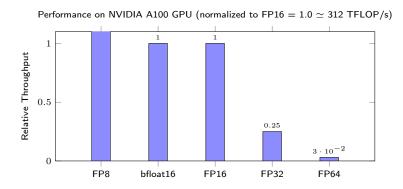
Scientific Computing / HPC

- High-precision needs: FP64 and beyond
- Uncertainty quantification, numerical stability
- Limited hardware support beyond double
- Software-based quad or arbitrary-prec libs

(e.g. NVIDIA A100, Google TPU)

(e.g. x86 CPUs, HPC nodes)

Hardware landscape is changing



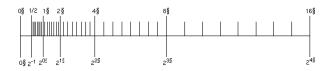
Hardware innovation has focused on low precision for speed, not on extended precision for accuracy.

Multiword arithmetic: combine low-precision words to reach higher precision flexibly

Outline

- Floating-Point (FP) Fundamentals and Error-Free Transforms
- Double words
- Multiple words (FP Expansions)
 - VecSumErrBranch A sketch of a proof
- Triple words
- Conclusion

Floating-point data



$$\mathcal{F} := \{0\} \cup \{\pm M \cdot 2^{e-p+1} : 2^{p-1} \le M < 2^p, e_{\min} \le e \le e_{\max}\}$$

- Base 2
- ullet Precision p
- ullet Exponent range defined by e_{\min} and e_{\max}

Assumption:

ullet $e_{\min}=-\infty$ and $e_{\max}=+\infty$ (unbounded exponent range)

Floating-point data (continued)

For any
$$x \in \mathcal{F} \setminus \{0\}$$
:

$$|x| = m \cdot 2^e$$
, $m = (*.*...*) \in [1, 2)$

Useful units

Unit in the first place:
$$ufp(x) = 2^e$$

Unit in the last place:
$$ulp(x) = 2^{e-p+1}$$

Unit in the last significant place:
$$\ \mathrm{uls}(x) \quad = \quad 2^k, \quad k = \max \left\{ \, i \in \mathbb{Z} \, \, \middle| \, \, x \in 2^i \mathbb{Z} \, \right\}$$

Unit roundoff:
$$u = 2^{-p}$$

Alternative views (structure of \mathcal{F})

$$x \in \text{ulp}(x) \mathbb{Z}$$

 $|x| = (1 + 2ku) \text{ ufp}(x), \quad k \in \mathbb{N}$

$$\Rightarrow \mathcal{F} \cap [1,2) = \{1, 1+2u, 1+4u, \dots\}$$

Rounding function

Define the round-to-nearest function:

$$\mathrm{RN}: \mathbb{R} \to \mathcal{F} \quad \text{such that} \quad \forall t \in \mathbb{R}, \; |\operatorname{RN}(t) - t| = \min_{f \in \mathcal{F}} |f - t|$$

- If $t \in \mathcal{F}$, then $\mathrm{RN}(t) = t$
- RN is non-decreasing
- For a reasonable tie-breaking rule:

$$RN(-t) = -RN(t)$$

$$RN(t2^e) = RN(t) 2^e, \quad e \in \mathbb{Z}$$

• Error bound:

$$|\operatorname{RN}(t) - t| \leq \frac{1}{2}\operatorname{ulp}\left(t\right) \leq \frac{1}{2}\operatorname{ulp}\left(\operatorname{RN}(t)\right)$$

• Relative error bounds:

$$\frac{|\operatorname{RN}(t)-t|}{|t|} \leq \frac{u}{1+u}, \qquad \frac{|\operatorname{RN}(t)-t|}{|\operatorname{RN}(t)|} \leq u$$

Error-free transformations (EFT)

Floating-point algorithms for computing exact rounding errors:

• Addition:

$$x+y-\mathrm{RN}(x+y)$$
 can be computed in 6 additions (Møller'65, Knuth) and not fewer (Kornerup, Lefèvre, Louvet, Muller'12 – *Most inelegant proof award*)

Multiplication:

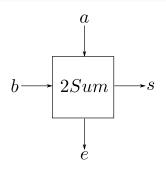
$$xy - RN(xy)$$

can be obtained

- in 17 operations (+ and ×) [Dekker'71, Boldo'06]
- or in only 2 ops if an FMA is available

$$\hat{z} := RN(xy) \implies xy - \hat{z} = FMA(x, y, -\hat{z})$$

EFT: 2Sum



Algorithm 1: 2Sum(a, b)

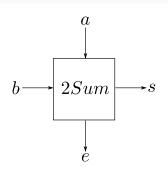
 $\begin{array}{l} s \leftarrow \mathsf{RN}\,(a+b) \\ t \leftarrow \mathsf{RN}\,(s-b) \\ e \leftarrow \mathsf{RN}\,\big(\mathsf{RN}\,(a-t) + \mathsf{RN}\,(b-\mathsf{RN}\,(s-t))\big) \\ \mathsf{return}\,\,(s,e) \end{array}$

Thm. (2Sum)

Let $a,b\in\mathcal{F}.$ Algorithm 2Sum computes $s,e\in\mathcal{F}$ s.t.

- s + e = a + b exactly
- $s = \mathsf{RN}(a+b)$.

EFT: 2Sum



 $\begin{array}{l} s \leftarrow \mathsf{RN}\left(a+b\right) \\ t \leftarrow \mathsf{RN}\left(s-b\right) \\ e \leftarrow \mathsf{RN}\left(\mathsf{RN}\left(a-t\right)\!\!+\!\mathsf{RN}\left(b-\mathsf{RN}\left(s-t\right)\right)\right) \\ \mathbf{return}\left(s,e\right) \end{array}$

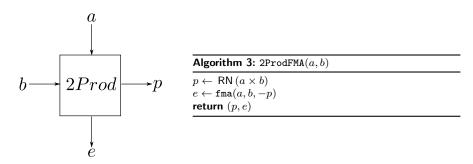
Thm. (2Sum)

Let $a,b\in\mathcal{F}.$ Algorithm 2Sum computes $s,e\in\mathcal{F}$ s.t.

- s + e = a + b exactly
- s = RN(a + b).

If $|b| \ge |a|$ we can use Fast2Sum.

EFT: 2ProdFMA



Thm. (2ProdFMA)

Let $a,b\in\mathcal{F}.$ Algorithm 2ProdFMA computes $p,e\in\mathcal{F}$ s.t.

- $p + e = a \times b$ exactly
- $s = \mathsf{RN}(a \times b)$.

Double-Word Arithmetic

- Fast2Sum, 2Sum, and 2Prod return unevaluated sum of two FP numbers.
- Perform more accurate calculations in critical parts of a numerical program.
- Leads to double-word or double-double arithmetic [Dekker, 1971], [Hida, Li, and Bailey], [Briggs],...
- One of most recent forms: pair arithmetic [Rump and Lange, 2020].

Double-word (DW)

A double-word (DW) number x is the unevaluated sum $x_h + x_\ell$ of two FP numbers x_h and x_ℓ such that

$$x_h = \mathsf{RN}\left(x\right)$$

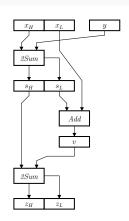
DWPlusFP Algorithm [Bailey's QD, 1999]

Algorithm DWPlusFP

$$\begin{split} &(s_h,s_\ell) \leftarrow 2 \mathrm{Sum}(x_h,y) \\ &v \leftarrow \mathrm{RN}(x_\ell + s_\ell) \\ &(z_h,z_\ell) \leftarrow \mathrm{Fast2Sum}(s_h,v) \\ &\mathbf{return}\ (z_h,z_\ell) \end{split}$$

The relative error satisfies:

$$\frac{(z_h + z_\ell) - (x+y)}{x + y} \le 2u^2$$



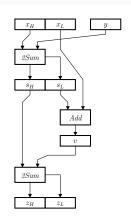
DWPlusFP Algorithm [Bailey's QD, 1999]

Algorithm DWPlusFP

$$\begin{split} &(s_h, s_\ell) \leftarrow 2 \mathrm{Sum}(x_h, y) \\ &v \leftarrow \mathrm{RN}(x_\ell + s_\ell) \\ &(z_h, z_\ell) \leftarrow \mathrm{Fast2Sum}(s_h, v) \\ &\mathbf{return}\ (z_h, z_\ell) \end{split}$$

The relative error satisfies:

$$\frac{(z_h + z_\ell) - (x+y)}{x+y} \le 2u^2$$



The error is tight:

Let
$$x_h=1$$
, $x_\ell=(2^p-1)\cdot 2^{-2p}$, $y=-\frac{1}{2}(1-2^{-p})$. Output is $\frac{1}{2}+3\cdot 2^{-p-1}$ and exact sum is $\frac{1}{2}+3\cdot 2^{-p-1}-2^{-2p}$, so a relative error of

$$\frac{2^{-2p+1}}{1+3\cdot 2^{-p}-2^{-2p+1}}\approx 2^{-2p+1}-3\cdot 2^{-3p+1}$$

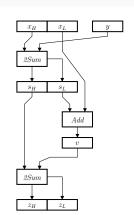
DWPlusFP Algorithm [Bailey's QD, 1999]

Algorithm DWPlusFP

$$\begin{split} &(s_h,s_\ell) \leftarrow 2 \mathrm{Sum}(x_h,y) \\ &v \leftarrow \mathrm{RN}(x_\ell + s_\ell) \\ &(z_h,z_\ell) \leftarrow \mathrm{Fast2Sum}(s_h,v) \\ &\mathbf{return}\ (z_h,z_\ell) \end{split}$$

The relative error satisfies:

$$\frac{(z_h + z_\ell) - (x + y)}{x + y} \le 2u^2$$



The error is tight:

Rideau, ACM TOMS 20231

Let $x_h=1$, $x_\ell=(2^p-1)\cdot 2^{-2p}$, $y=-\frac{1}{2}(1-2^{-p})$. Output is $\frac{1}{2}+3\cdot 2^{-p-1}$ and exact sum is $\frac{1}{2}+3\cdot 2^{-p-1}-2^{-2p}$, so a relative error of

$$\frac{2^{-2p+1}}{1+3\cdot 2^{-p}-2^{-2p+1}}\approx 2^{-2p+1}-3\cdot 2^{-3p+1}$$

When the signs of x_h and y agree, the relative error is bounded by 2^{-2p} [Lefèvre, Louvet, Muller, Picot,

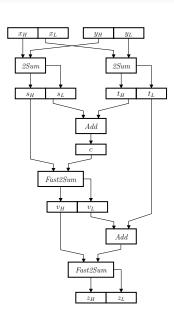
AccurateDWPlusDW Algorithm [Li et al., 2000]

Algorithm DWPlusDW

$$\begin{split} &(s_h,s_\ell) \leftarrow 2 \mathrm{Sum}(x_h,y_h) \\ &(t_h,t_\ell) \leftarrow 2 \mathrm{Sum}(x_\ell,y_\ell) \\ &c \leftarrow \mathrm{RN}\left(s_\ell+t_h\right) \\ &(v_h,v_\ell) \leftarrow \mathrm{Fast2Sum}(s_h,c) \\ &w \leftarrow \mathrm{RN}\left(t_\ell+v_\ell\right) \\ &(z_h,z_\ell) \leftarrow \mathrm{Fast2Sum}(v_h,w) \\ &\mathbf{return}\left(z_h,z_\ell\right) \end{split}$$

If $p \ge 3$, the relative error is bounded by:

$$\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots$$



AccurateDWPlusDW Algorithm [Li et al., 2000]

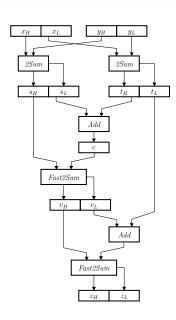
Algorithm DWPlusDW

$$\begin{split} &(s_h,s_\ell) \leftarrow 2 \mathrm{Sum}(x_h,y_h) \\ &(t_h,t_\ell) \leftarrow 2 \mathrm{Sum}(x_\ell,y_\ell) \\ &c \leftarrow \mathrm{RN}\left(s_\ell+t_h\right) \\ &(v_h,v_\ell) \leftarrow \mathrm{Fast2Sum}(s_h,c) \\ &w \leftarrow \mathrm{RN}\left(t_\ell+v_\ell\right) \\ &(z_h,z_\ell) \leftarrow \mathrm{Fast2Sum}(v_h,w) \\ &\mathbf{return}\left(z_h,z_\ell\right) \end{split}$$

If $p \ge 3$, the relative error is bounded by:

$$\frac{3u^2}{1-4u} = 3u^2 + 12u^3 + 48u^4 + \cdots$$

- Claim of an error bound of $2u^2$ (in binary64)
- ullet An example was found with error $pprox 2.25 u^2$
- When formalizing [MullerRideau2022], minor error found in the pen and paper proof



Outline

- Floating-Point (FP) Fundamentals and Error-Free Transforms
- Double words
- Multiple words (FP Expansions)
 - VecSumErrBranch A sketch of a proof
- Triple words
- Conclusion

Multiword Arithmetic

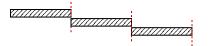
Definition

A multiword number (or floating-point expansion) represents a real number as an unevaluated sum of standard floating-point words:

$$u = u_0 + u_1 + \dots + u_{n-1},$$

with components ordered by magnitude and non-overlapping

$$|u_{i+1}| \leq \operatorname{Func}(u_i).$$



- Each term u_i is a standard / hardware float (e.g., double)
- The higher terms capture rounding residuals from lower ones
- Typical cases: double-double (2 words), triple-double (3 words)

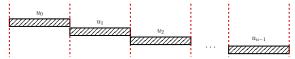
[Dekker '71, Knuth '97, Priest '92]

Wobbling Precision: Multi-word vs Multi-digit Representations

- Multiple-digit representation (fixed precision):
 - long mantissa + a single shared exponent
 - arithmetic is correctly rounded and IEEE 754 compatible
 - implemented in arbitrary-precision libraries such as GNU MPFR

s e M

- Multiple-word representation (wobbling precision):
 - unevaluated sum of several FP words
 - overall precision can wobble slightly depending on rounding and overlap
 - used in libraries such as QD, CAMPARY



Example: p = 5 (radix 2)

The real number $R = 1.11010011_2 \times 2^{-1}$ can be represented in several ways:

$$R = x_0 + x_1 + x_2:$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0010 \times 2^{-3}, \\ x_2 = 1.0110 \times 2^{-6}. \end{cases}$$

$$R = x_0 + x_1 + x_2:$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0010 \times 2^{-3}, \\ x_2 = 1.0110 \times 2^{-6}. \end{cases}$$

$$R = x_0 + x_1 + x_2:$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

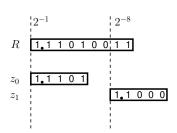
$$\begin{cases} x_0 = 1.1000 \times 2^{-1}, \\ x_1 = 1.0110 \times 2^{-6}. \end{cases}$$

Example: p = 5 (radix 2)

The real number $R = 1.11010011_2 \times 2^{-1}$ can be represented in several ways:

Most compact $R = z_0 + z_1$:

$$\begin{cases} z_0 = 1.1101 \times 2^{-1}, \\ z_1 = 1.1000 \times 2^{-8}. \end{cases}$$

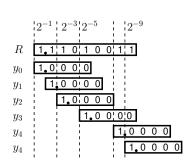


Example: p = 5 (radix 2)

The real number $R = 1.11010011_2 \times 2^{-1}$ can be represented in several ways:

Least compact

$$R = y_0 + y_1 + y_2 + y_3 + y_4 + y_5$$
:
$$\begin{cases} y_0 = 1.0000 \times 2^{-1}, \\ y_1 = 1.0000 \times 2^{-2}, \\ y_2 = 1.0000 \times 2^{-3}, \\ y_3 = 1.0000 \times 2^{-5}, \\ y_4 = 1.0000 \times 2^{-8}, \\ y_5 = 1.0000 \times 2^{-9}. \end{cases}$$

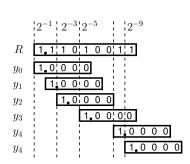


Example: p = 5 (radix 2)

The real number $R = 1.11010011_2 \times 2^{-1}$ can be represented in several ways:

Least compact

$$R = y_0 + y_1 + y_2 + y_3 + y_4 + y_5$$
:
$$\begin{cases} y_0 = 1.0000 \times 2^{-1}, \\ y_1 = 1.0000 \times 2^{-2}, \\ y_2 = 1.0000 \times 2^{-3}, \\ y_3 = 1.0000 \times 2^{-5}, \\ y_4 = 1.0000 \times 2^{-8}, \\ y_5 = 1.0000 \times 2^{-9}. \end{cases}$$



Example: p = 5 (radix 2)

The real number $R = 1.11010011_2 \times 2^{-1}$ can be represented in several ways:

Least compact

Key point

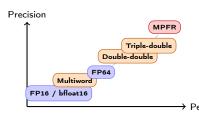
To convey more information \Longrightarrow non-overlapping representation

 \Longrightarrow requires (re)normalization algorithms

Why It Matters

Scientific and Engineering Context

- Precision gap: applications which require more than 53 bits, but MPFR may be too slow
- Examples:
 - Long-time simulations (weather, long time iterations in dynamical systems)
 - III-conditioned linear algebra
- Leveraging hardware-compatible, tunable precision.



Multiword arithmetic bridges the gap between standard hardware and full arbitrary precision

Specification issues

- Each variant (Dekker, Knuth, Priest, etc.) has subtle non-overlapping rules
- Correctness proofs and tight error bounds are non-trivial but essential

Nonoverlapping representations

PNonoverlap (Priest's definition)

For an expansion $u_0, u_1, \ldots, u_{n-1}$, we have $|u_i| < \mathsf{ulp}(u_{i-1})$ for all 0 < i < n.

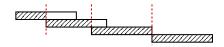
UlpNonoverlap (Relaxed Priest's definition)

For an expansion u_0, u_1, \dots, u_{n-1} , we have $|u_i| \leq \operatorname{ulp}(u_{i-1})$ for all 0 < i < n.

Nonoverlapping representations

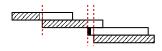
Nonzero-overlapping: SNonoverlap (Shewchuk's definition)

For an expansion u_0, u_1, \dots, u_{n-1} , we have $|u_i| < \mathsf{uls}\,(u_{i-1})$ for all 0 < i < n.



Nonzero-overlapping: FNonoverlap (Fabiano's definition)

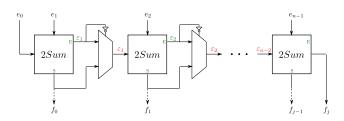
For an expansion u_0,u_1,\dots,u_{n-1} , we have $|u_i|\leq \frac{1}{2}\operatorname{uls}\left(u_{i-1}\right)$ for all 0< i< n.



Outline

- Double words
- Multiple words (FP Expansions)
 - VecSumErrBranch A sketch of a proof
- Triple words
- Conclusion

VecSumErrBranch



Algorithm 4: VecSumErrBranch

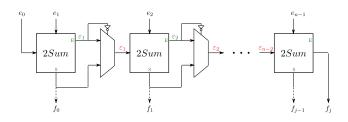
```
\begin{array}{l} \text{Input: } (e_0,\ldots,e_{n-1}) \\ \text{Output: } (f_0,\ldots,f_{j-1}) \\ j=0 \\ \varepsilon_0=e_0 \\ \text{for } i\leftarrow 1 \text{ to } n-1 \text{ do} \\ & \left|\begin{array}{c} (s_i,\varepsilon_i)\leftarrow 2\mathsf{Sum}(\varepsilon_{i-1},e_i) \\ \text{if } \varepsilon_i\neq 0 \text{ then} \\ & \left|\begin{array}{c} f_j=s_i \\ j=j+1 \\ \text{else} \\ & \left|\begin{array}{c} \varepsilon_i=s_i \\ \end{array}\right. \end{array} \right| \\ \text{return } (f_0,\ldots,f_{j-1}) \end{array}
```

• Error free summation:

$$\sum_{i=0}^{n-1} e_i = \sum_{k=0}^{j-1} f_k$$

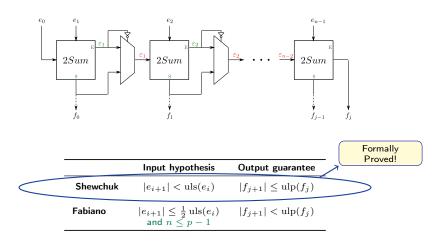
 carries are propagated to the right

Input vs. Output Non-Overlapping in VecSumErrBranch



	Input hypothesis	Output guarantee
Shewchuk	$ e_{i+1} < \operatorname{uls}(e_i)$	$ f_{j+1} \le \text{ulp}(f_j)$
Fabiano	$\begin{array}{c} e_{i+1} \leq \frac{1}{2}\operatorname{uls}(e_i) \\ \text{and } n \leq p-1 \end{array}$	$ f_{j+1} < \mathrm{ulp}(f_j)$

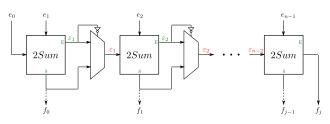
Input vs. Output Non-Overlapping in VecSumErrBranch



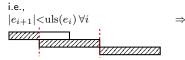
Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

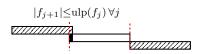
Photo taken by Jean-Michel at RAIM 2016 in Banyuls.

VecSumErrBranch



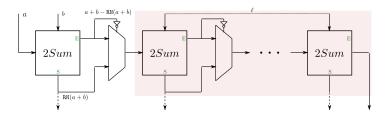
Thm. (Shewchuk-Nonoverlap):





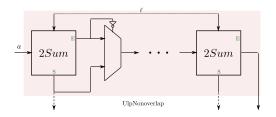
Observations:

- Trivial for at most 2 inputs.
- Interleaving zeros can be safely ignored.



- ullet Proved by structural induction on tail of input list $(a::b::\ell)$.
- ullet Two elements, a and b are processed at a time, then recursion on a smaller list:

$$\begin{cases} & \mathsf{VecSumErrBranch}\ ((a+b)::\ell), & \text{if}\ a+b-\mathsf{RN}\ (a+b)=0 \\ \mathsf{RN}\ (a+b):: \mathsf{VecSumErrBranch}\ (a+b-\mathsf{RN}\ (a+b)::\ell), & \text{otherwise} \end{cases}$$



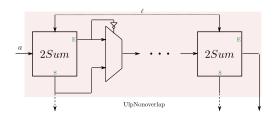
• Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 ${\sf SNonoverlap}(a::\ell) \to {\sf UlpNonoverlap}\ ({\tt VecSumErrBranch}\ (a::\ell))$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 $\mathsf{SNonoverlap}(a :: \ell) \to \mathsf{UlpNonoverlap} (\mathsf{VecSumErrBranch} \ (a :: \ell))$

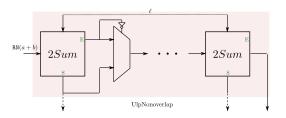
Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a::b::\ell)$, $RN(a+b) \neq 0$,

Forall FP $(a :: b :: \ell)$, SNonoverlap $(RN (a + b) :: \ell)$,

 $\mathsf{SNonoverlap}(a :: b :: \ell)$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 $\mathsf{SNonoverlap}(a :: \ell) \to \mathsf{UlpNonoverlap} (\mathsf{VecSumErrBranch} \ (a :: \ell))$

Additional Lemmas:

 $\forall a, b,$

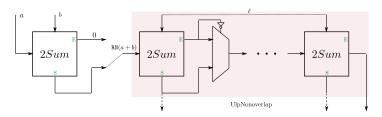
Forall nonzero $(a :: b :: \ell)$,

 $b::\ell),$ $\mathsf{RN}\,(a+b) \neq 0,$

Forall FP $(a::b::\ell)$, SNonoverlap $(RN(a+b)::\ell)$,

 $\mathsf{SNonoverlap}(a :: b :: \ell)$

- Combined with IH:
 - $\rightarrow \mathsf{UlpNonoverlap}\;(\mathtt{VecSumErrBranch}\;\left(\;\mathsf{RN}\left(a+b\right)::\ell\right))$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 $\mathsf{SNonoverlap}(a::\ell) \to \mathsf{UIpNonoverlap}\ (\mathtt{VecSumErrBranch}\ (a::\ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

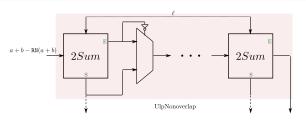
Forall FP $(a :: b :: \ell)$,

 $RN(a+b) \neq 0$,

SNonoverlap (RN $(a + b) :: \ell$),

 $\mathsf{SNonoverlap}(a :: b :: \ell)$

- Combined with IH:
 - \rightarrow UlpNonoverlap (VecSumErrBranch (RN $(a + b) :: \ell)$) \checkmark (Exact addition case)



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 $\mathsf{SNonoverlap}(a::\ell) \to \mathsf{UIpNonoverlap}\ (\mathtt{VecSumErrBranch}\ (a::\ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

Forall FP $(a :: b :: \ell)$, $\mathsf{SNonoverlap}(a :: b :: \ell)$

 $RN(a+b) \neq 0$,

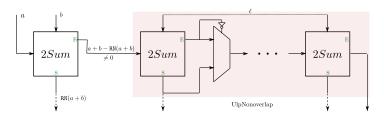
SNonoverlap (RN $(a + b) :: \ell$),

 $\mathsf{SNonoverlap}(a+b-\mathsf{RN}\,(a+b)::\ell)$

Combined with IH:

 \rightarrow UlpNonoverlap (VecSumErrBranch (RN $(a+b)::\ell)$) \checkmark (Exact addition case)

 $\rightarrow \mathsf{UlpNonoverlap}\ (\mathtt{VecSumErrBranch}\ (a+b-\ \mathsf{RN}\ (a+b) :: \ell))$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 ${\sf SNonoverlap}(a::\ell) \to {\sf UlpNonoverlap}\ ({\tt VecSumErrBranch}\ (a::\ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

Forall FP $(a :: b :: \ell)$,

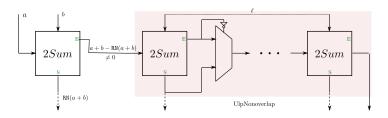
 $\mathsf{SNonoverlap}(a :: b :: \ell)$

 $RN(a+b) \neq 0$,

SNonoverlap (RN $(a + b) :: \ell$),

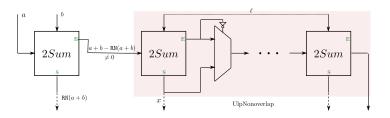
SNonoverlap $(a + b - RN (a + b) :: \ell)$

- Combined with IH:
 - $\rightarrow \mathsf{UlpNonoverlap} \; (\mathtt{VecSumErrBranch} \; (\; \mathsf{RN} \, (a+b) :: \ell)) \quad \checkmark (\mathsf{Exact} \; \mathsf{addition} \; \mathsf{case})$
 - $\rightarrow \mathsf{UlpNonoverlap}\;(\mathtt{VecSumErrBranch}\;\left(a+b-\;\mathsf{RN}\left(a+b\right)::\ell\right))$



- Fxact addition case follows directly from IH.
- Otherwise, reconstruction of output:

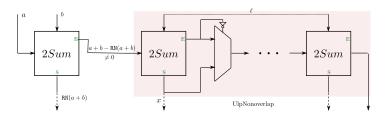
$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\mathsf{UlpNonoverlap}}$$



- ✓Exact addition case follows directly from IH.
- Otherwise, reconstruction of output:

$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\left(x \quad :: \quad \ldots\right)}$$

$$x \ = \ \mathsf{RN} \left(a + b - \ \mathsf{RN} \left(a + b \right) + \sum_{i \le k} \ell_i \right) \ \neq 0$$



- ✓Exact addition case follows directly from IH.
- Otherwise, reconstruction of output:

$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\left(x \quad :: \quad \ldots\right)}$$

Prove that:

$$|x| = |\operatorname{RN}\left(a+b-\operatorname{RN}\left(a+b\right) + \sum_{i \leq k} \ell_i)| \qquad \leq \operatorname{ulp}\left(\operatorname{RN}\left(a+b\right)\right)$$

Need to prove that:

For all nonzero $a,b,\ell_1,\dots,\ell_k\in\mathcal{F}$, with SNonoverlap $(a,b::\ell)$ and $a+b-\mathsf{RN}\,(a+b)\neq 0$, we have

$$|\operatorname{RN}\left(a+b-\operatorname{RN}\left(a+b\right)+\sum_{i\leq k}\ell_{i}\right)|\leq \operatorname{ulp}\left(\operatorname{RN}\left(a+b\right)\right).$$

Recall that:

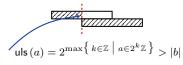
$$|\mathbf{A}| = \mathbf{A} + \mathbf{b} - |\mathbf{R}| \mathbf{N} (a+b)| \le \frac{1}{2} \operatorname{ulp} (a+b) \le \frac{1}{2} \operatorname{ulp} (\mathbf{R}| \mathbf{N} (a+b))$$

✓If
$$y \in \mathcal{F}$$
 and $x \leq y$, then $\mathsf{RN}\left(x\right) \leq y$

It remains to prove that $|\sum\limits_{i\leq k}\ell_{i}|\leq |a+b-\,{\rm RN}\,(a+b)|$ under the conditions above.

SNonoverlap property

 $\text{For all } a,b\in\mathcal{F}\text{, } a\neq 0\text{, uls }(a)>|b| \text{ iif there exist } e,\,n\in\mathbb{Z} \text{ s.t. } a=n\,2^e \quad \text{and} \quad |b|<2^e.$



SNonoverlap property

```
For all nonzero a,b,c\in\mathcal{F},  \begin{split} \mathtt{SNonoverlap}\;(a::b::c) &\Longrightarrow \mathtt{SNonoverlap}\;(\,\mathtt{RN}\,(a+b)::c) \\ &\quad \mathsf{and} \\ &\quad \mathtt{SNonoverlap}\;(a+b-\,\mathtt{RN}\,(a+b)::c). \end{split}
```

Proof.

$$\begin{split} |b| < \mathsf{uls}\,(a) &\iff \mathsf{there}\;\mathsf{exist}\;e_a \in \mathbb{Z}\;\mathsf{and}\;n_a \in \mathbb{Z},\;\;\mathsf{s.t.}\;\;a = n_a\;2^{e_a}\;\;\mathsf{and}\;\;|b| < 2^{e_a}\\ |c| < \mathsf{uls}\,(b) &\iff \mathsf{there}\;\mathsf{exist}\;e_b \in \mathbb{Z}\;\mathsf{and}\;n_b \in \mathbb{Z},\;\;\mathsf{s.t.}\;\;b = n_b\;2^{e_b}\;\;\mathsf{and}\;\;|c| < 2^{e_b} \end{split}$$

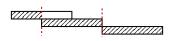
So
$$|b| < |a|$$
 and $e_b < e_a$, which implies RN $(a+b) \in 2^{e_b}\mathbb{Z}$ and RN $(a+b) \neq 0$.

Hence $|RN(a+b)| \ge 2^{e_b} > c$.

A similar argument gives $a+b-\mathsf{RN}\,(a+b)\in 2^{e_b}\mathbb{Z}$.

SNonoverlap property

For all nonzero $a,b,c\in\mathcal{F}$, ${\tt SNonoverlap}\;(a::b::c)\Longrightarrow |b+c|<{\tt uls}\,(a).$



SNonoverlap property

For all nonzero $a,b,c\in\mathcal{F}$,

 $\texttt{SNonoverlap}\ (a :: b :: c) \Longrightarrow |b+c| < \mathsf{uls}\,(a).$

Proof.

$$\begin{aligned} |b| < \text{uls}\,(a) &\iff \text{there exist } e_a \in \mathbb{Z} \text{ and } n_a \in \mathbb{Z}, \quad \text{s.t. } a = n_a \, 2^{e_a} \quad \text{and} \quad |b| < 2^{e_a} \\ |c| < \text{uls}\,(b) &\iff \text{there exist } e_b \in \mathbb{Z} \text{ and } n_b \in \mathbb{Z}, \quad \text{s.t. } b = n_b \, 2^{e_b} \quad \text{and} \quad |c| < 2^{e_b} \end{aligned}$$

First note that
$$e_b < e_a$$
 and $|n_b| \le 2^{e_a - e_b} - 1$. So $|b+c| < |n_b| \, 2^{e_b} + 2^{e_b} \le (|n_b| + 1) \, 2^{e_b} \le 2^{e_a}$.

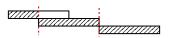
SNonoverlap property

For all nonzero $a, b, c \in \mathcal{F}$,

 $\texttt{SNonoverlap}\ (a :: b :: c) \Longrightarrow |b + c| < \mathsf{uls}\,(a).$

SNonoverlap property

For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,



SNonoverlap property

For all nonzero $a, b, c \in \mathcal{F}$,

SNonoverlap $(a::b::c) \Longrightarrow |b+c| < \mathsf{uls}(a)$.

SNonoverlap property

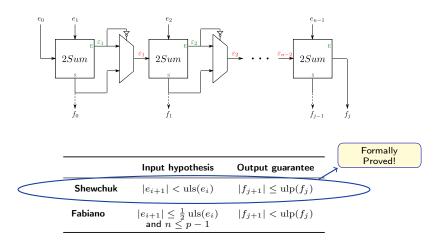
For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,

SNonoverlap $(a:: \ell_1:: \ldots :: \ell_k) \Longrightarrow \left|\sum\limits_{i < k} \ell_i\right| < \mathsf{uls}\,(a).$

So, SNonoverlap
$$(a+b-\mathsf{RN}\,(a+b)::\ell_1::\ldots:\ell_k)\Longrightarrow \left|\sum\limits_{i\le k}\ell_i\right|<\mathsf{uls}\,(a+b-\mathsf{RN}\,(a+b)).$$

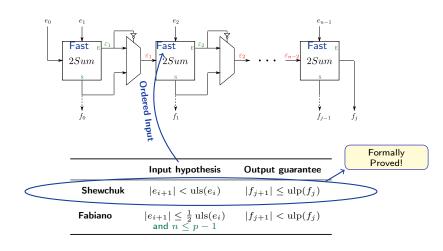
Finally,
$$\left|\sum\limits_{i < k} \ell_i \right| < |a+b-|\operatorname{RN}{(a+b)}|.$$

Input vs. Output Non-Overlapping in VecSumErrBranch



Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

Input vs. Output Non-Overlapping in VecSumErrBranch



Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

Vibe Coding in Rocq

I saw a guy coding today.

Tab 1 ChatGPT.

Tab 2 Gemini.

Tab 3 Claude.

Tab 4 Grok.

Tab 5 DeepSeek.

He asked every AI the same exact question.

Patiently waited, then pasted each response into

5 different Python files.

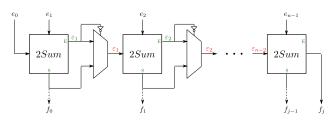
Hit run on all five.

Pick the best one.

Like a psychopath.

It's me.

VecSumErrBranch



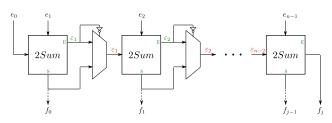
Thm. (Shewchuk-Nonoverlap):

$$\text{Let } e = (e_0, \dots, e_{n-1}) \text{ with } e_i \in \mathcal{F}, \text{ and } e_i \neq 0, \text{ for } 0 \leq i \leq n-1. \\ \text{SNonoverlap } e \qquad \Rightarrow \qquad \text{UlpNonoverlap}(\underbrace{\text{VecSumErrBranch } e}_{(f_0, \dots, f_j)}), \\ \text{i.e.,} \\ |e_{i+1}| < \text{ uls}(e_i) \, \forall i \qquad \Rightarrow \qquad |f_{j+1}| \leq \text{ulp}(f_j) \, \forall j$$

Observations:

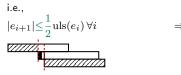
- Trivial for at most 2 inputs.
- Interleaving zeros can be safely ignored.

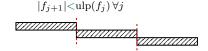
VecSumErrBranch



Thm. (Fabiano-Nonoverlap):

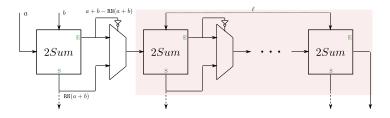
$$\text{Let } e = (e_0, \dots, e_{n-1}) \text{ with } e_i \in \mathcal{F}, \text{ and } e_i \neq 0, \text{ for } 0 \leq i \leq n-1, \ n \leq p-1. \\ \text{FNonoverlap} e \Rightarrow \qquad \text{PNonoverlap}(\underbrace{\text{VecSumErrBranch } e}_{(f_0, \dots, f_j)}),$$





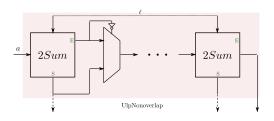
Observations:

- Trivial for at most 2 inputs.
- Interleaving zeros can be safely ignored.



- ullet Proved by structural induction on tail of input list $(a::b::\ell)$.
- ullet Two elements, a and b are processed at a time, then recursion on a smaller list:

$$\begin{cases} & \mathsf{VecSumErrBranch}\ ((a+b) :: \ell), & \text{if}\ a+b-\mathsf{RN}\ (a+b) = 0 \\ \mathsf{RN}\ (a+b) :: \mathsf{VecSumErrBranch}\ (a+b-\mathsf{RN}\ (a+b) :: \ell), & \text{otherwise} \end{cases}$$



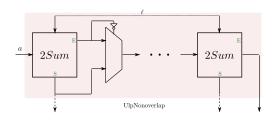
• Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

 ${\sf FNonoverlap}\ (a::\ell) \to {\sf PNonoverlap}\ ({\tt VecSumErrBranch}\ (a::\ell))$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

FNonoverlap $(a :: \ell) \rightarrow \mathsf{PNonoverlap} (\mathsf{VecSumErrBranch} \ (a :: \ell))$

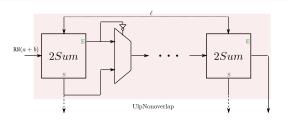
Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a::b::\ell)$, $RN(a+b) \neq 0$,

Forall FP $(a :: b :: \ell)$, FNonoverlap $(RN (a + b) :: \ell)$,

 $\mathsf{FNonoverlap}(a :: b :: \ell)$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

FNonoverlap $(a :: \ell) \rightarrow \mathsf{PNonoverlap} (\mathsf{VecSumErrBranch} \ (a :: \ell))$

Additional Lemmas:

 $\forall a, b,$

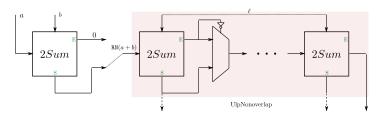
Forall nonzero $(a::b::\ell)$, $RN(a+b) \neq 0$,

Forall FP $(a :: b :: \ell)$, FNonoverlap $(RN (a + b) :: \ell)$,

 $\mathsf{FNonoverlap}(a :: b :: \ell)$

• Combined with IH:

 $\rightarrow {\tt PNonoverlap} \; ({\tt VecSumErrBranch} \; \left(\; {\tt RN} \left(a + b \right) :: \ell \right))$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

FNonoverlap $(a :: \ell) \rightarrow \mathsf{PNonoverlap} (\mathsf{VecSumErrBranch} \ (a :: \ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

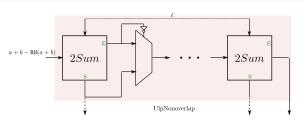
 $RN(a+b) \neq 0,$

 $\text{Forall FP } (a :: b :: \ell), \\ \text{FNonoverlap} (\operatorname{RN} (a + b) :: \ell), \\$

 $\mathsf{FNonoverlap}(a :: b :: \ell)$

• Combined with IH:

ightarrow PNonoverlap (VecSumErrBranch (RN $(a+b)::\ell)$) \checkmark (Exact addition case)



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

FNonoverlap $(a :: \ell) \rightarrow \mathsf{PNonoverlap} (VecSumErrBranch (a :: \ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

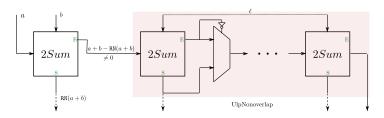
Forall FP $(a :: b :: \ell)$,

 $RN(a+b) \neq 0$,

FNonoverlap(RN $(a + b) :: \ell$),

 $\mathsf{FNonoverlap}(a :: b :: \ell)$ $\mathsf{FNonoverlap}(a+b-\mathsf{RN}\,(a+b)::\ell)$

- Combined with IH:
 - \rightarrow PNonoverlap (VecSumErrBranch (RN $(a+b)::\ell)$) \checkmark (Exact addition case) $\rightarrow {\tt PNonoverlap} \; ({\tt VecSumErrBranch} \; \left(a+b- \; {\tt RN} \left(a+b\right) :: \ell)\right)$



Induction Hypothesis:

 $\forall a$,

Forall nonzero $(a :: \ell)$,

Forall FP $(a :: \ell)$,

FNonoverlap $(a :: \ell) \rightarrow \mathsf{PNonoverlap} (VecSumErrBranch (a :: \ell))$

Additional Lemmas:

 $\forall a, b,$

Forall nonzero $(a :: b :: \ell)$,

 $\mathsf{FNonoverlap}(a :: b :: \ell)$

Forall FP $(a :: b :: \ell)$,

 $RN(a+b) \neq 0$,

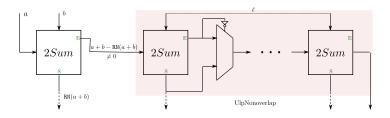
FNonoverlap(RN $(a + b) :: \ell$),

 $\mathsf{FNonoverlap}(a+b-\mathsf{RN}\,(a+b)::\ell)$

Combined with IH:

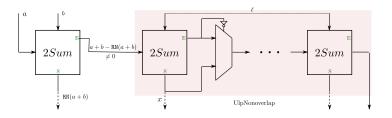
 \rightarrow PNonoverlap (VecSumErrBranch (RN $(a + b) :: \ell)$) \checkmark (Exact addition case)

 $\rightarrow {\tt PNonoverlap} \; ({\tt VecSumErrBranch} \; \left(a+b- \; {\tt RN} \left(a+b\right) :: \ell)\right)$



- ✓ Exact addition case follows directly from IH.
- Otherwise, reconstruction of output:

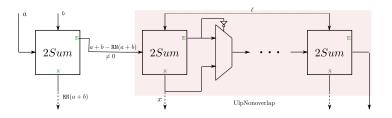
$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\mathsf{PNonoverlap}})$$



- ✓Exact addition case follows directly from IH.
- Otherwise, reconstruction of output:

$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\left(x \quad :: \quad \ldots\right)}$$

$$x \ = \ \mathsf{RN} \left(a + b - \ \mathsf{RN} \left(a + b \right) + \sum_{i \le k} \ell_i \right) \ \neq 0$$



- ✓ Exact addition case follows directly from IH.
- Otherwise, reconstruction of output:

$$\mathsf{RN}\left(a+b\right) :: \underbrace{\mathsf{VecSumErrBranch}\,\left(a+b-\,\mathsf{RN}\,(a+b) :: \ell\right)}_{\left(x \quad :: \quad \ldots\right)}$$

Prove that:

$$|x| = |\operatorname{RN}\left(a + b - \operatorname{RN}\left(a + b\right) + \sum_{i \le k} \ell_i)| \qquad < \operatorname{ulp}\left(\operatorname{RN}\left(a + b\right)\right)$$

Need to prove that:

For all nonzero $a,b,\ell_1,\dots,\ell_k\in\mathcal{F}$, with FNonoverlap $(a,b::\ell)$ and $a+b-\mathsf{RN}\,(a+b)\neq 0$, we have

$$|\operatorname{RN}\left(a+b-\operatorname{RN}\left(a+b\right)+\sum_{i\leq k}\ell_{i}\right)|<\operatorname{ulp}\left(\operatorname{RN}\left(a+b\right)\right).$$

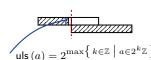
Recall that:

$$| |a+b - |RN| (a+b) | \le \frac{1}{2} ulp (a+b) \le \frac{1}{2} ulp (RN (a+b)) |$$

✓If $y \in \mathcal{F}$ and $x \leq y$, then RN $(x) \leq y$... not very useful directly...

FNonoverlap property

 $\text{For all } a,b\in\mathcal{F}\text{, } a\neq 0\text{, } \frac{1}{2}\operatorname{uls}(a)\geq |b| \text{ iif there exist } e,\,n\in\mathbb{Z} \text{ s.t. } a=n\,2^e \quad \text{and} \quad |b|\leq 2^{e-1}.$



FNonoverlap property

For all nonzero
$$a,b,c\in\mathcal{F}$$
, FNonoverlap $(a::b::c)$ \Longrightarrow FNonoverlap $(\mathsf{RN}\,(a+b)::c)$ and FNonoverlap $(a+b-\mathsf{RN}\,(a+b)::c)$.

Proof.

$$|b| \leq \frac{1}{2} \operatorname{uls}(a) \iff \text{ there exist } e_a \in \mathbb{Z} \text{ and } n_a \in \mathbb{Z}, \text{ s.t. } a = n_a \, 2^{e_a} \text{ and } |b| \leq 2^{e_a - 1}$$

$$|c| \leq \frac{1}{2} \operatorname{uls}(b) \iff \text{ there exist } e_b \in \mathbb{Z} \text{ and } n_b \in \mathbb{Z}, \text{ s.t. } b = n_b \, 2^{e_b} \text{ and } |c| \leq 2^{e_b - 1}$$

So $|b| \leq \frac{1}{2} |a|$ and $e_b \leq e_a - 1$, which implies $\mathsf{RN} \, (a+b) \in 2^{e_b} \mathbb{Z}$ and $\mathsf{RN} \, (a+b) \neq 0$. A similar argument gives $a+b-\mathsf{RN} \, (a+b) \in 2^{e_b} \mathbb{Z}$.

SNonoverlap property

For all nonzero $a,b,c\in\mathcal{F}$,

 $\texttt{SNonoverlap} \ (a :: b :: c) \Longrightarrow |b+c| < \mathsf{uls} \ (a).$

FNonoverlap property

For all nonzero $a, b, c \in \mathcal{F}$,

FNonoverlap
$$(a::b::c) \Longrightarrow |b+c| \nleq \frac{1}{2} \operatorname{uls}(a)$$
.

Example: $b = \frac{1}{2} \operatorname{uls}(a)$ and c > 0.

Realizing this little change implies modifying some Rocq code... (that I barely understand)

FNonoverlap property

For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,

FNonoverlap
$$(a:: \ell_1:: \ldots :: \ell_k) \Longrightarrow \left| a + \sum\limits_{i \leq k} \ell_i \right| \leq |a| \left(2 - 2^{-k} \right).$$

Proof.

$$|\ell_1| \le \frac{1}{2}|a|$$

$$|\ell_2| \leq \frac{1}{4}|a|$$

٠.

$$|\ell_k| \le \frac{1}{2^k} |a|$$

FNonoverlap property

For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,

FNonoverlap
$$(a:: \ell_1:: \ldots :: \ell_k) \Longrightarrow \left| a + \sum_{i \leq k} \ell_i \right| \leq |a| \left(2 - 2^{-k}\right).$$

Proof.

$$|\ell_1| \leq \frac{1}{2}|a|$$

$$|\ell_2| \le \frac{1}{4}|a|$$

. . .

$$|\ell_k| \le \frac{1}{2^k} |a|$$

So, FNonoverlap
$$(a+b-\mathsf{RN}\,(a+b)::\ell_1::\ldots::\ell_k)\Longrightarrow$$

$$\left| a+b-\,\mathsf{RN}\,(a+b) + \sum_{i \leq k} \,\ell_i \right| \leq \underbrace{\,\mathsf{ulp}\,(\,\mathsf{RN}\,(a+b))\left(1-2^{-k-1}\right)}_{}.$$

FNonoverlap property

For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,

FNonoverlap
$$(a :: \ell_1 :: \ldots :: \ell_k) \Longrightarrow \left| a + \sum_{i \leq k} \ell_i \right| \leq |a| \left(2 - 2^{-k}\right).$$

Proof.

$$|\ell_1| \le \frac{1}{2}|a|$$

$$|\ell_2| \le \frac{1}{4}|a|$$

. . .

$$|\ell_k| \le \frac{1}{2^k} |a|$$

So, FNonoverlap
$$(a+b-{\sf RN}\,(a+b)::\ell_1::\ldots::\ell_k)\Longrightarrow$$

✓If
$$y \in \mathcal{F}$$
 and $x \leq y$, then RN $(x) \leq y$.

FNonoverlap property

For all nonzero $a, \ell_1, \ldots, \ell_k \in \mathcal{F}$,

FNonoverlap
$$(a:: \ell_1 :: \ldots :: \ell_k) \Longrightarrow \left| a + \sum_{i \le k} \ell_i \right| \le |a| \left(2 - 2^{-k}\right)$$
.

Proof.

$$|\ell_1| \le \frac{1}{2}|a|$$
$$|\ell_2| \le \frac{1}{4}|a|$$

$$|\ell_k| \leq \frac{1}{2^k} |a|$$

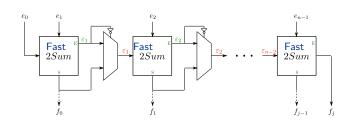
So, FNonoverlap
$$(a+b-{\sf RN}\,(a+b)::\ell_1::\ldots::\ell_k)\Longrightarrow$$

$$\left| a+b-\operatorname{RN}\left(a+b\right) +\sum_{i\leq k}\ell_{i}\right| \leq \underbrace{\operatorname{ulp}\left(\operatorname{RN}\left(a+b\right) \right)\left(1-2^{-k-1}\right)}_{}.$$

✓If $y \in \mathcal{F}$ and $x \leq y$, then RN $(x) \leq y$.

Finally,
$$\left| \, \mathsf{RN} \, (a+b-\,\mathsf{RN} \, (a+b) + \sum\limits_{i \le k} \ell_i) \right| < \, \mathsf{ulp} \, (\, \mathsf{RN} \, (a+b)).$$

Input vs. Output Non-Overlapping in VecSumErrBranch



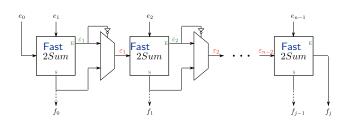
	Input hypothesis	Output guarantee
Shewchuk	$ e_{i+1} < \operatorname{uls}(e_i)$	$ f_{j+1} \le \mathrm{ulp}(f_j)$
Fabiano	$ e_{i+1} \le \frac{1}{2}\operatorname{uls}(e_i)$ and $n \le p-1$	$ f_{j+1} < \mathrm{ulp}(f_j)$

Formally Proved!

Note: The proof also handles subnormals without any issues.

Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

Input vs. Output Non-Overlapping in VecSumErrBranch

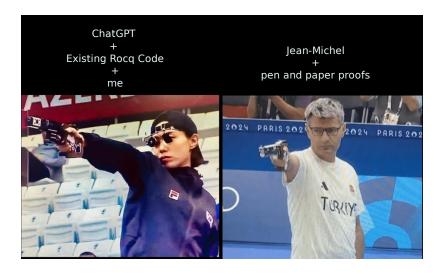


	Input hypothesis	Output guarantee
Shewchuk	$ e_{i+1} < \operatorname{uls}(e_i)$	$ f_{j+1} \le \text{ulp}(f_j)$
Fabiano	$ e_{i+1} \leq rac{1}{2}\operatorname{uls}(e_i)$ and $n \leq p-1$	$ f_{j+1} < \mathrm{ulp}(f_j)$

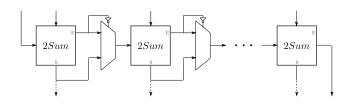
Formally Proved!

Note: The proof also handles subnormals without any issues.

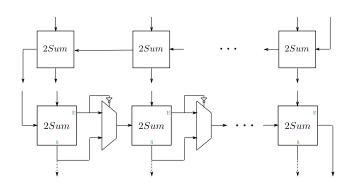
Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.



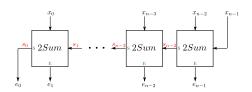
Renormalisation Algorithms



Renormalisation Algorithms



VecSum



Algorithm 5: VecSum

Input: $x_0, ..., x_{n-1}$

Output:
$$e_0, ..., e_{n-1}$$

for
$$i \leftarrow n-1$$
 down to 1 do

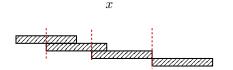
$$(s_{i-1}, e_i) \leftarrow 2\mathsf{Sum}(x_i, x_{i-1})$$

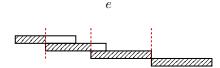
$$e_0 \leftarrow s_0$$

return e_0, \ldots, e_{n-1}

Thm.

If
$$x_0,\ldots,x_{n-1}\in\mathcal{F}$$
 overlap by at most $d\leq p-2$ digits \to SNonoverlap $(e_0,\ldots,e_{n-1}).$





Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

Proof of the *VecSum* **algorithm property** Here is some excerpt of the proof in [10]:

$$|x_{j+1}| + |x_{j+2}| + \dots \le$$

$$\le [2^d + 2^{2d-p} + 2^{3d-2p} + 2^{4d-3p} + \dots] \operatorname{ulp}(x_j)$$

$$< 2^d \cdot 2^p / (2^p - 1) \cdot \operatorname{ulp}(x_i).$$

This is partly wrong! In fact the geometric series should be bounded by:

$$2^{d} + 2^{2d-p} + 2^{3d-2p} + 2^{4d-3p} + \dots < 2^{d}/(1 - 2^{d-p}).$$

The proof can be fixed as the two inequalities were coarse enough, so there is no problem at this point.

^[10] is Joldes, Marty, Muller, Popescu. Arithmetic algorithms for extended precision using floating-point expansions, IEEE TC, 2015

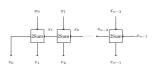
Boldo, Joldes, Muller & Popescu. Formal verification of a floating-point expansion renormalization algorithm, International Conference on Interactive Theorem Proving, 2017.

VecSum... Reloaded

2.1 VecSum

The VecSum algorithm (Algorithm 4) first appears as a part of Priest's normalization algorithm [26]. The name "VecSum" was coined by Ogita et al [24]. The aim of this algorithm is to turn a sequence that is "slighthy" nonoverlapping into one that is "more" nonoverlapping, with no error. It is illustrated Fig. 1.

$$\begin{split} & \overline{\textbf{Algorithm 4 - VecSum}(x_0, \dots, x_{n-1}). \ (6n-6 \ \text{operations})} \\ & \overline{\textbf{Ensure}} \cdot e_0 + \dots + e_{n-1} = x_0 + \dots + x_{n-1} \\ & \overline{\textbf{for } i = n-2 \ \textbf{to} \ 0 \ \textbf{do}} \\ & s_i, e_{i+1} \leftarrow 2\text{Sum}(x_i, s_{i+1}) \\ & \textbf{end for} \\ & e_0 \leftarrow s_0 \\ & \textbf{return} \ \ (e_0, e_1, \dots, e_{n-1}) \end{split}$$



or zu, that must be the case for one of the $x_j, j \le i - z$. In particular, we have $2^{k_j} \le \frac{1}{2}$, hence $2^{k_{i-2}} \le \frac{1}{2}$, so $2^{k_{i-1}} \le \frac{1}{4}$, which contradicts $|e_i| \le 2u2^{k_{i-1}}$.

The conditions on the input of Theorem 1 are complex, so we will use the following corollary:

Corollary 1. Assume that we have $I \subset [1, n-2]$ with no 2 consecutive indices such that

$$\forall i \in [0, n-2], i \notin I, ufp(x_{i+1}) \le \frac{1}{2}ufp(x_i),$$

and

$$\forall i \in I$$
, $ufp(x_{i+1}) \le 2^{p-2}uls(x_i)$ and $ufp(x_{i+1}) \le \frac{1}{4}ufp(x_{i-1})$

Then $VecSum(x_0, ..., x_{n-1})$ is F-nonoverlapping with the same sum. In this case, Fast2Sum can be used instead of 2Sum, so that Algorithm 4 only costs 3n-3 operations.

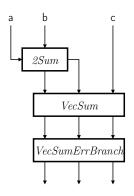
Proof: For $i \notin I$, we take $k_i = e_x$, the canonical exponent, and for $i \in I$, we take $k_i = \max(k_{i+1} + 1, e_x)$. This is possible because: $2^{k_{i+1}-p+2}|x_i$ and $2^{e_{x_i}-p+1}|x_i$, which imply $2^{k_i-p+1}|x_i$, and $|x_i| \le 2 \cdot 2^{e_{x_i}}$, which imply $|x_i| \le 2 \cdot 2^{k_i}$.

For $i, i+1 \notin I$, we have $k_{i+1} \le k_i - 1$. For $i \in I$, we have on one hand $k_{i+1} \le k_i - 1$, and on the other hand $e_{x_i} \le k_{i-1} - 1$ and $k_{i+1} \le k_{i-1} - 2$ so $k_i \le k_{i-1} - 1$.

... and no formal proof yet!

Fabiano, Muller & Picot. Algorithms for triple-word arithmetic, IEEE Transactions on Computers, 2019.

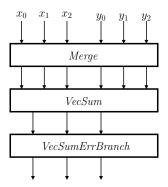
Triple-word (TW) algorithms $_{\text{To-TW}}$



If $a, b, c \in \mathcal{F}$, then To-TW(a, b, c) is a TW, provided that p > 4.

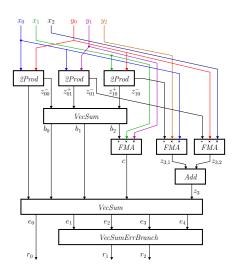
Fabiano, Muller & Picot. Algorithms for triple-word arithmetic, IEEE Transactions on Computers, 2019.

Triple-word (TW) algorithms TWSum



Fabiano, Muller & Picot. Algorithms for triple-word arithmetic, IEEE Transactions on Computers, 2019.

Triple-double algorithms 3ProdAcc



Fabiano, Muller & Picot. Algorithms for triple-word arithmetic, IEEE Transactions on Computers, 2019.

Outline

- Floating-Point (FP) Fundamentals and Error-Free Transforms
- Double words
- Multiple words (FP Expansions)
 - VecSumErrBranch A sketch of a proof
- Triple words
- Conclusion

• An insight into the fundamentals of EFT-based algorithms for Multiword arithmetic

- An insight into the fundamentals of EFT-based algorithms for Multiword arithmetic
- Many (interesting) variants were left unexplored in this talk e.g., use of FD2, FD2A, ADD3 cf. [Hubrecht, Jeannerod, Muller, 2024]

- An insight into the fundamentals of EFT-based algorithms for Multiword arithmetic
- Many (interesting) variants were left unexplored in this talk e.g., use of FD2, FD2A, ADD3 cf. [Hubrecht, Jeannerod, Muller, 2024]
- Subtle non-overlapping rules
- Correctness proofs and tight error bounds are non-trivial but essential in a scientific computing context

- An insight into the fundamentals of EFT-based algorithms for Multiword arithmetic
- Many (interesting) variants were left unexplored in this talk e.g., use of FD2, FD2A, ADD3 cf. [Hubrecht, Jeannerod, Muller, 2024]
- Subtle non-overlapping rules
- Correctness proofs and tight error bounds are non-trivial but essential in a scientific computing context
- Complementing pen and paper with formal proofs seems indispensable yet we are not at a stage to fully automate this

- An insight into the fundamentals of EFT-based algorithms for Multiword arithmetic
- Many (interesting) variants were left unexplored in this talk e.g., use of FD2, FD2A, ADD3 cf. [Hubrecht, Jeannerod, Muller, 2024]
- Subtle non-overlapping rules
- Correctness proofs and tight error bounds are non-trivial but essential in a scientific computing context
- Complementing pen and paper with formal proofs seems indispensable yet we are not at a stage to fully automate this
- https://homepages.laas.fr/mmjoldes/stageM2Arith.html

This meme is trivial and has been left as an exercise to the audience.